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Figure 1: Vortices of raising smoke hitting a moving ball (ball not rendered).

Abstract

Solving the N -body problem, i.e. the Poisson problem with point
sources, is a common task in graphics and simulation. The naive
direct summation of the kernel function over all particles scales
quadratically, rendering it too slow for large problems, while the
optimal Fast Multipole Method has drastic implementation com-
plexity and can sometimes carry too high an overhead to be practi-
cal. We present a new Particle-Particle Particle-Mesh (PPPM) algo-
rithm which is fast, accurate, and easy to implement even in parallel
on a GPU. We capture long-range interactions with a fast multigrid
solver on a background grid with a novel boundary condition, while
short-range interactions are calculated directly with a new error
compensation to avoid error from the background grid. We demon-
strate the power of PPPM with a new vortex particle smoke solver,
which features a vortex segment-approach to the stretching term,
potential flow to enforce no-stick solid boundaries on arbitrary
moving solid boundaries, and a new mechanism for vortex shedding
from boundary layers. Comparison against a simpler Vortex-in-Cell
approach shows PPPM can produce significantly more detailed re-
sults with less computation. In addition, we use our PPPM solver
for a Poisson surface reconstruction problem to show its potential
as a general-purpose Poisson solver.
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Table 1: Common symbols used throughout the paper.

xi position of ith Lagrangian element
X position of a grid cell’s center

u (x) velocity evaluated for Lagrangian elements
u (X) velocity evaluated at grid cells
ufar the velocity introduced by far field vorticity
unear the velocity introduced by near field vorticity
uω rotational part of the flow velocity
uφ irrotational, divergence free part of the flow velocity
u∞ velocity at infinity, such as the speed at which the

reference frame is moving
ω 3D vector valued vorticity strength
σ scalar valued charge density per unit area
h width of the grid cell
K K = 0, 1, 2, 3, ... the local correction range
Ψ a vector valued stream function
Φ scalar valued potential function
ωL the local vorticity field defined on nearby cells
ΨL the local stream function with source term ωL
uL velocity introduced by ωL

1 Introduction

A common numerical problem in and outside of graphics is solving
the Poisson equation ∇2f = −ρ whose exact solution (assuming
zero boundary conditions at infinity for now) can be expressed as
an integral with the fundamental solution kernel, in 3D:

f(x) =

ˆ
ρ(x′)

1

4π‖x− x′‖dx
′. (1)

(In other dimensions, the kernel is of course a little different).

In many physics applications, ρ(x) is a sum of point sources at
positions xj and strengths ρj , or can be approximated as such:
ρ(x) =

∑
j ρjδ(x − xj) (e.g. vortex blobs [Chorin 1973]). In as-

trophysics, calculating the gravitational force by summing over all
masses is essentially solving the Poisson problem with the density
distribution as the right-hand side [Hockney and Eastwood 1989].
The same Poisson problem appears in electrostatics with a charge
distribution on particles (or charge panels), with a recent interesting
application in graphics [Wang et al. 2013]. A more thorough review
regarding the Poisson problem and N-body dynamics can be found
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in Hockney and Eastwood’s work [1989]. In those simulations, the
solution is usually obtained by

f(x) =
∑

j: x 6=xj

ρjvj
4π‖x− xj‖

. (2)

With N particles and M locations to evaluate, often at the N parti-
cles themselves, this takes O(MN) time, which scales poorly.

The Poisson problem or its solution as a summation over particles
has appeared in diverse graphics papers. For example, Kazhdan et
al. [2006] solve a Poisson problem to reconstruct a surface from
point samples; Jacobson et al. [2013] segment the inside from the
outside of triangle soup by constructing a harmonic function from
sources on triangle faces, again using a summation approach; many
fluid solvers (e.g. [Stam 1999; Fedkiw et al. 2001]) solve a Poisson
problem every time step for pressure projection; and Lagrangian
vorticity-based fluid solvers (e.g. [Park and Kim 2005]) evaluate the
velocity field by summing over vortex sources with the Biot-Savart
law, which is just the curl of equation (2).

While sometimes it is natural to discretize the Poisson equation on
a grid with finite differences, and impose some boundary condition
on the edges of the grid, often we want to solve the “free space”
problem with boundaries only at infinity, or with sources or bound-
aries distributed arbitrarily through space: on particles, on contours,
on the triangles of a mesh, etc. Here the integral or summation ap-
proach would shine but for the cost of directly evaluating the sum.

Alternative methods exist to accelerate the expensive summa-
tion. Foremost among these is the Fast Multipole Method (FMM)
[Greengard and Rokhlin 1987], which can reduce the cost from
O(MN) to O(M + N). Probably due to implementation com-
plexity and (typically) a large overhead in runtime, the FMM has
not been widely adopted in graphics: parallelized direct summation
can easily outperform FMM forN up to 100,000 in our experience.

Vortex-in-cell (VIC) methods [Couet et al. 1981] have also been
adopted to efficiently albeit roughly approximate the velocity field.
VIC splats the right-hand side of the Poisson problem to a fine grid,
solves the PDE on the grid with finite differences or similar, and in-
terpolates the solution back from the grid. The computational com-
plexity is typically dominated by an efficient grid solve. However,
VIC loses accuracy when the vorticity fields are under-resolved on
the grid resolution; transferring values back and forth between grid
and particles forms a major source of numerical diffusion.

A more promising approach, in our view, is the Particle-Particle
Particle-Mesh (PPPM) method [Anderson 1986]. The Particle-
Mesh component of PPPM approximates the smooth long-range
interactions by splatting the particles on to a grid (mesh), using
a fast solver for a finite-difference version of the Poisson problem
on that grid, and then interpolating back to evaluation points, just
like VIC. The Particle-Particle component greatly enhances the ac-
curacy by including the kernel summation just for very close pairs
of particles, whose interactions aren’t properly captured with the
grid. Assuming the distribution of particles is such that a moderate
resolution grid exists with a small number of particles per cell, the
particle operations in PPPM are O(M + N) and the overall run-
time is determined by the grid solver (which traditionally has been
O(N logN) with an FFT solver). Moreover, operations such as
splatting to or interpolating from a grid are easy to implement with
little overhead. That said, prior PPPM methods have had trouble
achieving linear runtime (due to the fast solver used) and full accu-
racy (due to boundary conditions at the edges of the grid, and errors
associated with near-field interactions as computed on the grid).

This paper first extends PPPM with two significant algorithm im-
provements:

• a new “monopole” grid boundary condition to accurately sim-
ulate unbounded domains,

• and a new error correction for nearby particle contributions in
the grid solve that is simple, fast, and accurate.

We also upgrade the traditional fast solver to linear-time multigrid,
and parallelize it all on the GPU for exceptional performance.

In the second part we turn to applications of our new PPPM, in
particular a new vortex particle smoke solver. Lagrangian vortex
methods succinctly represent richly detailed flow, and suffer no nu-
merical diffusion or projection-related dissipation as other solvers
may. Their central step is reconstructing velocity from vorticity via
the Biot-Savart law, essentially the curl of equation (2),

u(x) =
∑

j: x 6=xj

∇ 1

4π‖x− xj‖
× ωj (3)

or equivalently solving a Poisson problem for a potential Ψ and tak-
ing its curl to get the velocity. Inviscid solid boundary conditions
can be implemented via a potental flow correction to this velocity
field, which through a boundary integral discretization with an iter-
ative linear solve likewise relies on anN -body summation / Poisson
solve. We use our new PPPM method in each case to achieve a high
performance, high quality smoke simulation. The greater accuracy
of our PPPM approach gives visually superior results than simpler
techniques such as Vortex-in-Cell and truncated kernels.

Apart from the challenge of efficientN -body summation, prior vor-
tex particle methods in graphics have had difficulties with the vor-
tex stretching term (necessary for conservation of angular momen-
tum and the characteristic look of developing turbulence) and vor-
tex shedding from solid boundaries. We propose solutions:

• an easy-to-implement vortex-segment-derived treatment of
vortex stretching with automatic conservation properties,

• and a simple boundary layer treatment to shed vortices from
solids, based on injecting vortex particles to boost the poten-
tial flow no-stick boundary condition to a no-slip boundary.

We also show that PPPM can be exploited for non-physics-related
problems in graphics, such as Poisson surface reconstruction.

2 Related work

Vortex methods are popular for high Reynolds number computa-
tional fluid dynamics [Cottet and Koumoutsakos 2000], very effi-
ciently capturing turbulent details; as vorticity in particular is visu-
ally very important, many graphics researchers have adopted vor-
tex approaches. Yaeger et al. [1986] began the trend with a VIC
solver to produce the realistic look of atmospheric flow on Jupiter.
Angelidis and Neyret [2005] used Lagrangian vortex primitives for
their flexibility; Selle et al. [2005] used vortex particles to augment
a more traditional Eulerian velocity-pressure simulation. Pfaff et
al. [2009] used vortex particles from pre-processed boundary lay-
ers to synthesize turbulence. Weißmann and Pinkall [2010] used
Biot-Savart summation for vortex rings.

Brochu et al. [2012] captured vorticity with a Lagrangian mesh,
including its generation from buoyancy, and used FMM for linear-
time Biot-Savart summation. Pfaff et al. [2012] used the same vor-
tex sheet representation to generate and evolve small scale details,
but accelerated summation with a truncated kernel, relying on a



coarse grid simulation to account for global effects. Pfaff et al.’s
hybrid use of a grid and nearfield vortex summation is reminiscent
of PPPM, but lacks the error correction stage we develop, and suf-
fers from the numerical dissipation of the pressure projection on
the grid. Both Brochu et al. and Pfaff et al. also pay a high cost
in mesh operations to maintain the deforming vortex sheet, which
we avoid by tracking density and calculating buoyancy with uncon-
nected particles.

Despite their attraction for turbulence, vortex methods have not
been widely aopted in the graphics industry, perhaps because of the
difficulty in accelerating Biot-Savart summation, or boundary con-
dition challenges, or the intricacies of vortex shedding. Addressing
these problem motivates this paper.

Many graphics applications outside fluids also solve the Poisson
problem. In Poisson surface reconstruction [Kazhdan et al. 2006],
the solution is important only around a narrow band of the input,
but the associated Poisson problem is most naturally posed on an
infinite domain, making an awkward fit for traditional voxel ap-
proaches.

Gumerov and Duraiswami [2008] demonstrated a high-
performance GPU implement of FMM, reporting 1.4s to
sum N = 106 particles on an NVIDIA GeForce 8800 GTX. Our
PPPM code runs the same problem on an NVIDIA GeForce GT
650M (laptop) in 0.7s. More subjectively, our experience is that
implementing a fast PPPM is vastly easier than even basic FMM.

We use multigrid as our fast grid solver as have many other graphics
papers (e.g. [Molemaker et al. 2008; Ferstl et al. 2014; McAdams
et al. 2010]), though we should note that Henderson suggests on
shared memory multiprocessors FFT still may be faster [2012].

3 Particle-Particle Particle-Mesh method

In this section we take Biot-Savart summation as an example to
explain the PPPM algorithm in detail. See figure 2 for an overview.

Given the vorticity ω = ∇ × u of an incompressible flow, and
ignoring boundary conditions for now, we can reconstruct velocity
(up to addition of the gradient of a harmonic scalar potential) by
solving for a streamfunction Ψ whose curl is the velocity:

{
∇2Ψ = −ω
Ψ (x) = 0 x→∞

(4)

In the case where the right hand side of this Poisson system is given
by a sum of n vortex elements, each carrying a vortex strength of
ωi, Ψ can be found by summation (c.f. equation 2). The velocity
is just the curl of this sum (equation 3), further expressed as

u (xi) =
1

4π

n∑
j=1,j 6=i

ωj × (xi − xj)
|xi − xj |3

, (5)

which is known as Biot-Savart summation.

When evaluating at a specific point, we decompose this velocity as
u = ufar + unear , where unear is the contribution from nearby
vortices and ufar gathers influences from the rest.

Due to the singularity of the kernel, unear varies rapidly in space
and is related to the small scale motion (turbulence), while ufar is
smooth and captures the large scale motion.

Realizing that multigrid Poisson solvers are excellent for smooth,
large scale motions, while particle-particle direct summations are

promising for the turbulent small scale motions, PPPM first esti-
mates ufar for each grid cell using a particle-mesh solver (§3.1)
and local-cancellation (§3.2). After that, PPPM interpolates ufar
for each vortex element and evaluates unear using direct summa-
tion. Details of the computational steps in the PPPM Biot-Savart
summation are outlined in Algorithm 1, where the subscript p indi-
cates the quantity is carried by a particle, and the subscript g indi-
cates the quantity is defined on a grid.

Algorithm 1 PPPMBiotSavartSummation(ωp, vp, xp, N , up)
1: BB←GetBoundingBox(xp)
2: DetermineComputationDomain //3×BB
3: ωg ←ParticleToMesh(ωp)
4: ComputeMonopoleDirichletBoundaryCondition
5: Ψ←ParallelMultigridSolvePoisson
6: ug ←Curl(Ψ)
7: for each grid cell in parallel
8: Subtract near field estimate to get far field component
9: endfor

10: for each particle i in parallel
11: up,i ← InterpolateFarField
12: endfor
13: for each particle i in parallel
14: Sum over particles in neighborhood η(i) of i:

(evaluating an accurate near field component)

15: ∆u←
∑
j∈η(i)

ωp,j×(xp,i−xp,j)
4π|xp,i−xp,j |3

(
1− exp

(
|x−xj |
α

)3
)

16: up,i ← up,i + ∆u
17: endfor

3.1 Particle-mesh step in open space

In the particle-mesh step, we determine the large scale flow motion
by solving a Poisson equation with Dirichlet condition(on domain
boundary):

{
∇2Ψ = −ω in Ω

Ψ = g on ∂Ω
(6)

The imposition of an artificial boundary at the edge of the grid is
necessary for the solve, but makes approximation of the open space
(infinite domain) problem tricky. We propose two special advances
in our discretization to gain higher accuracy for the large scale mo-
tion in open space, compared to prior PPPM methods which use
periodic boundaries or a homogenous Dirichlet condition. First,
we use a computational domain that is three times as large as the
bounding box of the vortex particles, giving us an effective padding
region: the artificial boundary is distant from all sources in the
problem. In open space the true solution Ψ at any evaluation point
xb on the boundary is exactly

Ψ (xb) =

N∑
i=1

ω (xi)h
3

4π |xi − xb|
. (7)

Computing these values to be used as the Dirichlet boundary con-
dition g would give, up to truncation error, the exact open space
solution. However evaluating equation 7 directly is too costly: in-
stead, we compute the cheap monopole approximation of the parti-
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Figure 2: An overview of our PPPM algorithm, which consists of a far-field construction step and a velocity evaluation step.

cle quantities, replacing equation 7 with

Ψ (xb) =

N∑
i=1

ω (xi)h
3

4π |xi − xb|
≈
∑N
i=1 ω (xi)h

3

4π |xc − xb|
=

m (xc)

4π |xc − xb|
(8)

where xc is the center of all the vortex particles. The monopole is
accurate when all the vortex particles are far away from the domain
boundary, which we guarantee by our domain construction. We
dub this the “monopole boundary condition” (line 4 in Algorithm
1), which experimentally we found doubles the accuracy of PPPM.

After we set up the computation domain and construct the boundary
condition, the particle values are splatted to the grid using

ω (X) =
1

h3

∑
i

viω (xi)

 ∏
θ=1,2,3

wθ

(
Xθ − xi,θ

h

) (9)

where subscript θ = 1, 2, 3 indicates the corresponding component
of a 3D vector, h the size of the grid cell, v the volume of a vortex
blob, i the index of a vortex blob, and w the splat kernel.

For the choice of w, we simply use nearest grid point (NGP) as-
signment, meaning each grid cell gathers the total strength of the
vortex particles inside it:

wθ (r) =

{
1, r ∈ [−0.5, 0.5) ,

0, else,
(10)

In our implementation, we accelerate the process by parallelizing
for each grid cell to gather vortex values around it, using spatial
hashing [Teschner et al. 2003] for efficient neighbour finding, fol-
lowing Green’s implementation [2008].

We then discretize the vector Poisson system using the seven-point
second order finite difference scheme, arriving at three scalar Pois-
son systems, one for each component. We solve the resulting linear
system for the streamfunction using multigrid, following Cohen et
al.’s implementation [2010].

Once we have found the streamfunction, we take its curl to get a
velocity field upm. upm is then used to derive the far field approx-
imation for each grid cell, using the procedure in the next section.

3.2 Cancelling local influences in the grid

To cancel the (relatively inaccurate) local contributions from nearby
grid cells, we need to estimate a local stream function ΨL that
solves

∇2ΨL = −ωL (11)

in open space, where ωL is the near-field vorticity only from the
nearby grid cells.

Conceptually, we can achieve this by putting ωL back in the global
domain(grid), and solving the Poisson system again. (However, as
we need a different estimate for each grid cell containing particles,
in practice this would be far too expensive.)

More formally, putting ωL back to the global domain is a prolon-
gation, PωL. The global Poisson solve can be denoted as Ψ =
L−1PωL. Reading back ΨL is a restriction of Ψ, R

(
L−1PωL

)
.

Finally, the local velocity field due to ωL is readilyR
(
L−1PωL

)
.

The accuracy and efficiency of local cancellation depends on fast
localized solutions for ΨL, say, expressed as a linear operator A:

ΨL = Ah2ωL, (12)

with A ≈ 1
h2RL−1P .

Theuns [1994] approximated A with an open space Green’s func-
tion. however, this is quite different from the inverse of the grid-
based operator, as the Green’s function is singular at r → 0 where
the grid-based inverse is bounded; this renders it unable to evaluate
the local contribution made by a grid value to itself. Walther [2003]
proposed a more accurate estimate at the cost of a pre-computation
stage: with a local correction window of size K, the method stores
a O

(
K6
)

matrix A which solves ΨL = AωL. This computation
is coupled to the grid resolution, restricting the simulation to static
grids.

We instead make entries of A dimensionless quantities, allowing us
to adapt the computation domain with more flexibility. We uncover
a more accurate relationship between A and the open space Green’s
function. For instance, with the Green’s function approach, one has

ΨL = Gh2ωL (13)

where Gi,j = h

4π|Xi−Xj | for i 6= j. (Observe that |Xi −Xj | is of

order h, making Gi,j dimensionless.)



Our observation is that the off-diagonal coefficients Ai,j are very
close to Gi,j , the open space Green’s function evaluated at different
grid cell centres. For diagonal terms, instead of being 0, we find
Ai,i → 0.25 for large domains. This diagonal constant responds to
the contribution made by a grid cell to itself.

Furthermore, if we replace the diagonal of G with this constant
and compute its inverse, the seven-point finite difference stencil is
essentially revealed. While we do not yet have a full derivation,
we provide our evidence in figure 3. These numerical findings give
us a new formulation to compute ΨL from ωL. We outline this
procedure in Algorithm 2.

Algorithm 2 Local_inverse(ωL)
1: ΨL ← 0
2: for i, j, k ∈ L //L = {i2, j2, k2|i2 ∈ [i − K, i + K], j2 ∈

[j −K, j +K], k2 ∈ [k −K, k +K]}
3: X1 ←Xi,j,k

4: if i2, j2, k2 ∈ L, i2, j2, k2 6= i, j, k
5: X2 ←Xi2,j2,k2

6: ΨL (X1)← ΨL (X1) + h3ωL(X2)
4π|X1−X2|

//using Green’s function
7:
8: else //i2, j2, k2 = i, j, k
9: ΨL (X1)← ΨL (X1) + 0.25h2ωL (X2)//notice X2 =
X1 where, 0.25h2 is the diagonal constant

10: endif
11: endfor

After we obtain ΨL, we can proceed to compute uL by taking the
finite difference curl of ΨL

uL = ∇h ×ΨL (14)

Following this naively requires each grid cell to have a small buffer
for the spatial varying function ΨL, making parallelizing imprac-
tical for GPU’s memory limitation. Instead, we return to the con-
struction of ΨL, first looking at off-diagonal contributions:

∇X,h ×ΨL = ∇X,h ×
∑

X′ 6=X

h3ωL (X ′)

4π |X −X ′|

=
∑

X 6=X′

h3ωL
(
X ′
)
×
(
−∇X,h

1

4π |X −X ′|

)
(15)

where ∇X,h
1

4π|X−Xj | denotes a discrete gradient operator to the

Green’s function atX . Let e1 be the unit vector (1, 0, 0); we have

(
∂

∂x

)
X,h

1

4π |X −X ′|

=
1

2h

(
1

4π |X + he1 −X ′|
− 1

4π |X − he1 −X ′|

)
. (16)

WhenX ± hek −X ′ = 0, 1
4π|X+hek−X′| is set to be 0.

We then compute a streamfunction buffer from the diagonal contri-
butions,

Ψd = 0.25h2ωg (17)

We then take the discrete curl of Ψd to get ud. The velocity intro-
duced by the near field grid is consequently obtained via

uL (X)

=
∑
j 6=i

h3ωL
(
X ′
)
×
(
−∇X,h

1

4π |X −X ′|

)
+ ud (18)

The new procedure overcomes the memory overflow issues with the
naive approach, is a lot faster and more scalable, while giving exact
same output (up to round-off) as the direct implementation.

3.3 Velocity evaluation

The far field influence at any given grid position X can be readily
obtained via:

ufar (X) = upm (X)− uL (X) (19)

where uL is determined by equation 18 in §3.2.

To evaluate the velocity for an arbitrary evaluation position xi, we
first interpolate from the far field buffer using trilinear interpolation,

ufar (x)← TriInterpolate (ufar, x) (20)

and then select all the nearby vortex elements within a cube CL of
size (2K + 1)h centred at x for near-field direct summation.

u (x) = ufar

+
∑

xj∈CL,xj 6=x

ωj × (x− xj)
4π |x− xj |3

(
1− exp

(
|x− xj |

α

)3
)
(21)

3.4 PPPM Discussion

For analysis, we assume a reasonably uniform distribution of vortex
particles in the computational domain. In the case where vortices
were initialized on a surface sheet, the turbulent motion quickly
breaks this sheet into many small blobs to make the vorticity distri-
bution roughly uniform.

We divide the domain into equal sized grid cells so that each cell
contains s particles on average, hence the number of cells is pro-
portional to N

s
. Transforming the particle quantities to the grid

takesO (N) time; applying the monopole boundary condition takes

O
(
N +

(
N
s

)2/3) operations; the multigrid Poisson solver with N
s

unknowns takesO
(
N
s

)
operations to get a solution; computing the

discrete curl or gradient of the field requires alsoO
(
N
s

)
operations;

interpolating from the grid quantity back to particles takes O (N)
operations; and finally direct summation with nearby particles takes
O (N) time.

To evaluate the velocity at some other m points, the runtime anal-
ysis is similar, only replacing the interpolating and local correction
procedures in the aforementioned pipeline, hence we end up with
O (m+ n) complexity as claimed.
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Figure 4: Performance of the PPPM fast summation. Computation
time grows linearly with the number of computational elements.

We tested the PPPM summation code for a random distribution of
vortex particles, comparing the PPPM results with direct summa-
tion, and looked at the error in a weighted average manner (particles
with a vanishing velocity get small weights),

As we can see from figure 5, the PPPM solution gets closer to
direct summation when larger local correction (LC) windows are
used. With a window size of K = 3, we obtained an error under
1%. Furthermore, since we bound the number of particles per cell,
with 16384 vortex particles the cell size h is half the size used for
2048 vortex particles. Therefore for the same K we have smaller
physical LC radius in the 16384 case, but the accuracy doesn’t de-
crease because one has better grid resolution to resolve the near
field physics.

The performance of the PPPM summation is shown in figure 4. The
computation time in our experiment grows linearly with respect to
the number of vortex particles.

In table 2 we use direct summation as the reference solution to
measure the accuracy of different approximations. We compare be-
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Figure 5: Accuracy statistics of the PPPM fast summation.

tween our Monopole B.C. (MBC) and prior work’s homogeneous
B.C. We can see clearly that the MBC enhances the approximation
in either case, while our PPPM method, being able to cancel the
grid cell self-influence, gives approximation an order of magnitude
higher than Theuns [1994]. On the other hand, the particle-mesh
method alone, even at higher cost, gives a poor approximation to
direct summation.

4 Vortex-Particle Smoke

In vortex methods, given the vorticity distribution and boundary
geometry, the velocity at any position x can be found as [Cottet
and Koumoutsakos 2000]

u (x) = uω + uφ + u∞ (22)

which is a combination of a rotational flow uω from the vorticity,
a potential flow uφ determined by the solid objects §4.2, and a
prescribed velocity field u∞ defined by an artist (it is better for
u∞ to be divergence-free, otherwise, we suggest using∇×u∞ as
a force field).

Ignoring viscosity, the dynamics of vorticity can be modeled from



Table 2: Accuracy of different method with and without the
monopole B.C.

Method K w/ MBC w/o MBC
PPPM 643 3 0.46% 1.13%
PM 1283 N/A 6.19% 6.38%

PPPM 643 w/o diagonal
cancellation [Theuns 1994] 3 2.78% 2.86%

the curl of the inviscid momentum equation,

Dω

Dt
= (ω · ∇)u+ β∇ρ× g. (23)

A vortex blob moves according to the combined velocityu of equa-
tion. 22, with vortex stretching((ω · ∇)u) due to flow deformation
in 3D and baroclinic vorticity generation β∇ρ× g concentrated on
the density interface.

In the presence of solid objects, an irrotational divergence-free flow
fielduφ can be found to cancel flow penetration at solid boundaries.
Apart from modelling solid objects as boundary conditions in the
vorticity solver, solid objects also can serve as a single layer source
of “charge distribution” that introduces a harmonic potential whose
gradient removes boundary penetration. More details about how to
determine and use this "electrostatic" field can be found in §4.2.

We discretize the flow using a set of vortex blobs, with position xi,
volume vi, density ρi, velocity ui, and vortex density ωi. At each
time step, we compute uω with Biot-Savart,

uω (x)

=
∑

all j,j 6=i

vjωj × (x− xj)
4π |x− xj |3

(
1− exp

(
|x− xj |

α

)3
)
, (24)

using PPPM fast summation. Notice we mollify the Green’s func-
tion kernel to desingularize the summation, a common necessity for
vortex particle codes.

Subdividing the surface of solid objects into many small panels, the
potential part of velocity, uφ, can be determined by

uφ (x)

=
∑

all j,j 6=i

Ajσj (xj − x)

4π |x− xj |3

(
1− exp

(
|x− xj |

α

)3
)

(25)

whereAj is the area of jth panel, σj is the potential source strength
per unit area found on the single layer, and xj is the centroid of the
jth panel.

At each time step, the strengths and positions of vortex blobs are
updated by:

1. Initialize a vortex segment for each vortex blob based on the
input vortex strength. §4.1

2. Update the position of each end of the vortex segment with
the velocity determined by equation 22, hence, the vortex seg-
ment is stretched automatically. §4.1

3. Reduce instabilities introduced by vortex stretching.§4.1

4. Add baroclinic vorticity generation to the vorticity field.

5. Add vorticity due to vortex shedding.4.2

Vortex blob to vortex segment Vortex blob to vortex segment Vortex segment being stretched Vortex segment being stretched 

Back to vortex blob representationBack to vortex blob representation

Figure 6: We switch to a vortex segment representation of vortex
particles at the beginning of each time step, move both ends of the
vortex segment in the flow, then switch back to vortex blobs.

4.1 Vortex segment, vortex stretching and stability is-
sue

This section describes the way to model vortex stretching using
vortex segments. Vortex stretching introduces instability in some
situations, which we address with a geometry-inspired filtering ap-
proach.

4.1.1 Vortex segments

Vortex stretching is the rate-of-change of vorticity due to the de-
formation of fluid. This step is naturally handled by vortex ring or
sheet representations: the stretching of the geometric elements au-
tomatically captures the vortex stretching term. This does not extent
to vortex particles with no geometric extent. An obvious solution
could be updating the vortex strength using

ωn+1 = ωn + ωn · ∇un (26)

It is unwise to take this approach because evaluating the gradient of
velocity requires the second derivative of the Green’s function. The
singularity of this function introduces large numerical instabilities.
Furthermore, computing the dot product is expensive.

We instead use a vortex-segment approach. A vortex segment is
a small spinning cylinder whose central axis is aligned with the
vorticity direction, with two ends xa and xb, length h, and constant
circulation κ. A vortex blob with vorticity strength viωi can be
translated to a vortex segment of length hi, with unit direction t̂i =

ωi√
‖ωi‖2

, and circulation κi = ωi/
(
hit̂i

)
. We translate our vortex

blob into such vortex segments at the beginning of each time step,
evaluate the velocity according to equation 22 for each end of the
vortex segment, and move each end of the vortex segment according
to

xn+1
i,a = xni,a + ∆tuni,a

xn+1
i,b = xni,b + ∆tuni,b. (27)

When both ends of the vortex segment are updated, the vortex seg-
ment is stretched and we transform it back to a vortex blob with
vortex strength,

viωi = κi
(
xn+1
i,b − x

n+1
i,a

)
. (28)

Notice the circulation is conserved. This whole process is illus-
trated in figure 6.

4.1.2 Stability issues

Vortex stretching is potentially unstable. Without addressing this
sensitivity, our simulation quickly diverges even with small time-
steps. We noticed that in turbulent flow, even when the magnitude



Vortex segment being stretched in a non-
smooth way generates numerical error

Vortex segment being stretched in a non-
smooth way generates numerical error

Improve stability by forcing the change made by 
stretching to be smooth without actually diffuse ω     
Improve stability by forcing the change made by 
stretching to be smooth without actually diffuse ω     

Figure 7: Sudden discontinuous motion of vortex segments in-
troduces and amplifies numerical error, which is reduced then by
smoothing the stretching terms.

of the velocity is small, the gradient of the velocity field can be
very large, which makes ω · ∇u large and drives the numerical
instabilities. To address this problem, we realized that in the phys-
ical world, the rate of change of vorticity due to vortex stretching
has some smoothness. We therefore compute the rate of change of
vorticity due to stretching by

(ω · ∇u)ni =
κi
(
xn+1
i,b − x

n+1
i,a

)
− ωn

∆t
(29)

and then apply a Gaussian filter to smooth (ω · ∇u)n in the domain
to get ˜(ω · ∇u)ni for each particle. Vorticity is updated by

ωn+1
i = ωni + ∆t ˜(ω · ∇u)ni . (30)

This approach is effectively a geometric repairing that forces the de-
formation of a vortex segment to be consistent with nearby vortex
segments, as illustrated in figure 7. With this approach, we stabi-
lized the simulation and reliably achieved long simulations when
using a constant large time step. Notice that in this scheme, we
smooth the update instead of the quantity itself to preserve sharp
features as much as possible, similar in spirit to FLIP [Zhu and
Bridson 2005].

4.2 Solid boundaries and vortex shedding

We incorporate boundary conditions by introducing an irrotational,
divergence free flow field uφ that cancels the normal velocity flux
on the boundary made by uω + u∞. We define uφ as the gradi-
ent of a scalar potential function Φ, solved with boundary integral
equations. After enforcing the no-through boundary condition, we
compute a vortex sheet on the surface heuristically [Chorin 1973],
and merge this surface vorticity into the vorticity field.

4.2.1 No-through boundary condition

The no-through boundary condition can be enforced by solving for
a scalar potential field that satisfies Laplace’s equation with Neu-
mann boundary condition[Brochu et al. 2012]

∆Φ = 0
∂Φ

∂n
= (usolid − ufluid) · n (31)

We write this function as a single layer potential, with a continuous
source distribution σ on the solid boundary,

Φ (x) =

ˆ

∂Ω

σ (y)

4π |x− y|dS (y) . (32)

Taking the normal derivative of Φ and substituting it into equation
31 gives a Fredholm equation of the second kind,

b (x) = −σ (x)

2
+

ˆ

∂Ω

σ (y)
∂

∂nx

1

4π |x− y|dS (y) (33)

where f (x) = (usolid (x)− ufluid (x)) · n (x).

We discretize this equation on a set of M boundary elements using
mid-point rule to arrive at

bi = −σi
2

+
∑
all j

∂

∂ni

σjAj
4π |xi − xj |

(34)

where Aj is the area of j’th surface element, and xi and xj are the
mid-points of corresponding boundary elements.

In practise, this equation gives a linear system for σ that is very
well-conditioned: iterative solvers like BiCGSTAB converge in
O (1) iterations. However, the M ×M coefficient matrix is dense
and evaluating the matrix vector product is M2. To overcome
this challenge, we reformulate equation 34 using the PPPM frame-
work. Given a source distribution σ, with proper reordering, the
off-diagonal part summation is exactly

boff−diagi = ni ·

 ∑
all j 6=i

σjAj (xj − xi)
4π |xi − xj |3

 (35)

which takes the same form of evaluating a gravitational force based
on mass particles, where, the “mass” of the particle here are de-
fined as σjAj . Hence our PPPM-accelerated evaluation of the ma-
trix vector multiplication directly follows the routines described in
Algorithm 3.

PPPM is used in two different places here. During the iteration,
we use PPPM to compute the force based on the current estimate
(line 7 of algorithm 3), and when the iteration is terminated we use
PPPM to compute uφ based on the single layer density.

Algorithm 3 PPPM_accelerated_Ax(b, σ, p, A, n, M)

1: f ← 0
2: b← 0
3: m← 0
4: for i=1:M in parallel
5: mi = Ai ∗ σi
6: endfor
7: f ←PPPM_Compute_Gravity(m, p, M)
8: for i=1:M in parallel
9: bi ← ni · f i − 0.5 ∗ σi

10: endfor

4.2.2 Vortex shedding

The inviscid assumption breaks down near boundaries, because it
never introduces vorticity into the flow field. In reality fluid viscos-
ity, no matter how small, generates vorticity concentrated along a
thin boundary layer along solid surfaces. In high Reynolds number
flows, this thin viscous boundary layer doesn’t affect the validity of
inviscid approximation being made elsewhere in the flow, but rather
serves as a source emitting vorticity into the flow.

Chorin [1973] modelled this process heuristically. in 2D. He as-
sumed a constant vorticity strength on the boundary element and
determined the vortex strength based on the tangential velocity slip.
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Figure 8: Vortex shedding process. In our approach, the vorticity
strength is explicitly determined.

Figure 9: Rising smoke using different number of vortex particles.
Left, 2049 particles: middle, 16384 particles; right, 130K particles.

Extending this idea to 3D, we determine the surface vorticity direc-
tion based on the tangential velocity and the surface normal: vortic-
ity is required to be perpendicular to these two vectors, its strength
is determined so that at a position in the normal direction, ε away
from the surface, the velocity introduced by this vorticity matches
the tangential slip. In other words, if we put a vortex of strength
Ajγj at the position ε away from the surface, the velocity it intro-
duces cancels the tangential slip at the boundary. This process is
illustrated in figure 8.

Once the concentrated vorticity strength is determined, we release
it to the flow field by adding some amount of its value to the nearest
vortex blob around the surface or release them to a position at a
small distance away from j’th boundary element. The amount to
be released is determined as

∆ω = ∆tcAjγj (36)

5 Results and Conclusions

5.1 PPPM for vortex flow

We implemented the PPPM algorithm on the GPU (nVidia GeForce
GT 650m). As we can see in figure 4, the performance of PPPM
scales linearly with the computational elements involved. On our

Figure 10: Without the far-field motion, direct summation using a
cut-off kernel results in wrong animation. Left: simulation uses cut-
off direct summation after 180 time steps. Right: simulation uses
PPPM summation after 180 time steps.

Figure 11: Comparison of VIC and PPPM. Top row, sequence of
643 VIC simulation; bottom row: PPPM using the same resolu-
tion grid. Notice that the large scale motion of the two simulation
matches before the point where turbulent motion becomes domi-
nant.

machine, simulations are still running interactively with even 16K
vortex particles on a single laptop GPU. We generate a preview
simulation with a small amount of tracer particles (16K) at interac-
tive rates, and then produce an enhanced result by just using more
particle tracers (6M).

Figure 9 illustrates rich turbulent phenomena even with a small
number of vortex particles.

To achieve our final results, we are not simply interpolating velocity
to the tracer particles, but rather computing the velocity of each
tracer particles with the full-influence Biot-Savart summation from
vortex particles. It is only with fast summation that it is feasible to
produce the results in figure 1, where 130K vortex particle and 6
million tracers were used. Each time step takes 100 sec to process
on a laptop with nVidia’s Geforce GT 650M graphics card.

We also observed that in our computation, local direct summation
dominates the computation time. However, with only this near field
direct summation (truncating the kernel to finite support), one ob-
tains unrealistic animations. Figure 10, a cut-off direct summation
uses the same cut-off range as the PPPM summation uses, takes al-
most same computation time as PPPM takes, but the smoke fails to
rise.

On the other hand, the PPPM code without local correction is re-
duced to a VIC solver, which fails to produce small scale motions
because of numerical smoothing. VIC running at higher resolution,
to produce turbulent animations similar to PPPM, takes 64 times
the memory cost and 10 times the simulation time every time step.
Figure 11 shows representation frames.

Counter-intuitively solving for the tracer particle motion takes more
time in a 2563 VIC simulation, even though this is just interpola-
tion, whereas in 643 PPPM there is a far-field interpolation followed
by a more costly near field direct summation. We suspect this is be-
cause memory access with larger velocity buffer is less efficient.

Our no-stick boundary condition and vortex shedding model han-
dles different boundary geometry robustly and produces visually
plausible animations. We left the shedding coefficient as an artist
controlled parameter. In the example shown in figure 12, we used
a shedding coefficient c = 0.6, set the size of the moving object to
one unit length, and let it move at a speed of 4 unit lengths/sec. The
vortex shedding model is able to produce complex turbulent wake
patterns.



Figure 12: Moving objects in slightly viscous flow generate turbulent wakes. Top row: vortex shedding from a moving ball. Bottom row: a
moving bunny.

Figure 13: PPPM Poisson surface reconstruction of: left) a bunny,
right) a dragon.

5.2 Applying PPPM to Poisson surface reconstruction

Given a set of n sample points at position
{x |x = xi, i = 1, 2, 3 . . . n}, with normals n̂i at xi, the
Poisson surface reconstruction [Kazhdan et al. 2006] algorithm
reconstructs the surface of the geometry in two steps:

1 Seek a scalar field φ whose gradient best matches the vector
field V defined by the input, i.e., find φ that solves

∇2φ = ∇ · V (37)

2 Determine a constant c s.t. the isosurface defined by φ (x) = c
is a good match of the geometry to be reconstructed. Here,
c = 1

n

∑
i φ (xi) (average of φ at input positions).

A detailed discussion of this algorithm is beyond the scope of this
paper. Here we emphasize the computation. In the original paper,
an adaptive Poisson solve on an octree was used. In our approach,
we only need to define the right-hand-side on a narrow band of
voxels near the input point clouds, and we can evaluate φ by sum-
mation.

More precisely, we obtain∇ · V in the narrow band, then solve for
φ with

φ (xi) =

n∑
j=1,j 6=i

h3fj
4π‖xi − xj‖

(38)

here, fj = −(∇ · V )j on voxel j, xi and xj the position of i’th
and j’th voxel, respectively. Those voxels and fj’s are then viewed
as particles with mass, allowing us to use PPPM to calculate the
summation.

We tested PPPM surface reconstruction on a bunny and a dragon,
shown in figure 13. While quality surface reconstruction is not the
focus of this paper, we argue this shows the potential of PPPM for
other branches of graphics. We are neither using super high resolu-
tion sparse voxels nor taking any effort in choosing a good Gaussian
kernel when splatting normals to construct the vector field V . For
the dragon case we reconstructed, the voxel size is determined to be

1
256

of the longest dimension. Since the computation involves only
those sparse voxels, the summation approach became more suit-
able; it would be difficult for typical finite difference approaches
to impose useful boundary conditions on the boundary cells of the
narrow band.

6 Limitations

Unlike FMM, where one can get a desired accuracy by taking
enough multipole expansions, in PPPM, further accuracy can not
be achieved for local correction range greater than 7 grid cells. Not
only is the local cancellation imperfect, but also, interpolating the
far field has limits to its accuracy.

The proposed PPPM focuses only on the N-body problem with par-
ticles, or boundary elements that can be viewed as particles. Ex-
tending the PPPM summation framework to non-particles such as
higher-order surface sheet or boundary elements should nonetheless
be straightforward. One could switch to higher-order quadrature
rules (or even exact integrals) for near field elements, or for each
element generate samples based on quadrature rule, interpolate the
value and scale it with the quadrature weights.

In FMM, one tracks adaptively distributed computational elements
with adaptive data structure, whereas PPPM use uniform back-
ground grids and uniform space hash. This greatly simplifies
the implementation and reduces computational overhead, but lim-
its PPPM scalability for sparse data. Adaptive Poisson solvers
[Losasso et al. 2004] might address this problem.

7 Future Work

Algorithmically, many improvements can be made to the proposed
PPPM. higher order finite element solvers for the PM part and
dipoles instead of monopole for ghost boundary would improve the
accuracy further, potentially with a smaller grid making for even
faster performance. For very large problems, with billions of par-
ticles, there may be interesting wrinkles in making a distributed
version.

The PPPM philosophy could also be extended to higher-order
boundary integrals, or diffusion kernels, potentially to accelerate
applications in and outside fluids: preconditioning or posing sub-
domain B.C. in large scale domain decomposition solvers, extend-
ing Eulerian simulation to open space, fast image and geometry
processing techniques.
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