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Figure 1: Rising smoke simulations with and without IVOCK (Integrated Vorticity of Convective Kinematics). From left to right:
Stable Fluids, Stable Fluids with IVOCK; BFECC, BFECC with IVOCK; MacCormack, MacCormack with IVOCK; FLIP, FLIP with IVOCK.

Abstract

Most visual effects fluid solvers use a time-splitting approach where
velocity is first advected in the flow, then projected to be incom-
pressible with pressure. Even if a highly accurate advection scheme
is used, the self-advection step typically transfers some kinetic
energy from divergence-free modes into divergent modes, which
are then projected out by pressure, losing energy noticeably for
large time steps. Instead of taking smaller time steps or using
significantly more complex time integration, we propose a new
scheme called IVOCK (Integrated Vorticity of Convective Kinemat-
ics) which cheaply captures much of what is lost in self-advection
by identifying it as a violation of the vorticity equation. We measure
vorticity on the grid before and after advection, taking into account
vortex stretching, and use a cheap multigrid V-cycle approxima-
tion to a vector potential whose curl will correct the vorticity error.
IVOCK works independently of the advection scheme (we present
examples with various semi-Lagrangian methods and FLIP), works
independently of how boundary conditions are applied (it just cor-
rects error in advection, leaving pressure etc. to take care of bound-
aries and other forces), and other solver parameters (we provide
smoke, fire, and water examples). For 10 ∼ 25% extra computa-
tion time per step much larger steps can be used, while producing
detailed vorticial structures and convincing turbulence that are lost
without correction.
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Table 1: Algorithm abbreviations used through out this paper.

IVOCK The computational routine (Alg.1) correcting
vorticity for advection

SF Classic Stable Fluids advection [Stam 1999]
SF-IVOCK IVOCK with SF advection
SL3 Semi-Lagrangian with RK3 path tracing

and clamped cubic interpolation
BFECC Kim et al.’s scheme [2005], with

extrema clamping([Selle et al. 2008])
BFECC-IVOCK IVOCK with BFECC advection
MC Selle et al.’s MacCormack method [2008]
MC-IVOCK IVOCK with MacCormack
FLIP Zhu and Bridson’s incompressible variant

of FLIP [2005]
FLIP-IVOCK FLIP advection of velocity and density,

SL3 for vorticity in IVOCK.

1 Introduction

In computer graphics, incompressible fluid dynamics are often
solved with fluid variables stored on a fixed Cartesian grid, known
as an Eulerian approach [Stam 1999]. The advantages of pres-
sure projection on a regular grid and the ease of treating smooth
quantities undergoing large deformations help explain its success
in a wide range of phenomena, such as liquids [Foster and Fedkiw
2001], smoke [Fedkiw et al. 2001] and fire [Nguyen et al. 2002].
Bridson’s text provides a good background [2008].

In Eulerian simulations, the fluid state is often solved with a time
splitting method: given the incompressible Euler equation,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ f

∇ · u = 0

(1)

fluid states are advanced by self-advection and incompressible pro-
jection. First one solves the advection equation

Du

Dt
= 0 (2)

to obtain an intermediate velocity field ũ, which is then projected
to be divergence-free by subtracting∇p, derived by a Poisson solve
from ũ itself. We formally denote this as un+1 = Proj (ũ).

Self-advection disregards the divergence-free constraint, allowing
some of the kinetic energy of the flow to be transferred into diver-
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Figure 2: Self-advection maps the original velocity field into a ro-
tational part and a divergent part, indicated by red and blue arrows
respectively. Pressure projection removes the blue arrows, leaving
the rotational part, and illustrating how angular momentum has
already been lost.

gent modes which are lost in pressure projection. We focus in par-
ticular on rotational motion: self-advection can sometimes cause a
noticeable violation of conservation of angular momentum, as il-
lustrated in Fig.2.

Despite many published solutions in improving the accuracy of ad-
vection scheme in an Eulerian framework (e.g. [Selle et al. 2008;
Lentine et al. 2011]), or reducing the numerical diffusion with
hybrid particle-in-cell solvers [Zhu and Bridson 2005], even with
higher-order integration [Edwards and Bridson 2014], only a few
papers have addressed this particular type of numerical dissipation.

Retaining the velocity-pressure approach but changing the time in-
tegration to a symplectic scheme, Mullen et al. [2009] were able
to discretely conserve energy when simulating fluids. However,
the expense of their non-linear solver for Crank-Nicolson-style in-
tegration, and the potential for spurious oscillations arising from
non-upwinded advection, raise questions about its practicality in
general.

Another branch of fluid solvers take the vorticity-velocity form of
the Navier-Stokes equation, exploiting the fact that the velocity field
induced from vorticity is always divergence free. These solvers ad-
vect the vorticity instead of the velocity of the fluid, preserving cir-
culation during the simulation. Vorticity is usually tracked by La-
grangian elements such as vortex particles [Park and Kim 2005],
vortex filaments [Weißmann and Pinkall 2010] or vortex sheets
[Brochu et al. 2012]. Apart from the fact that the computational cost
of these methods can be a lot more expensive per-time-step than a
grid-based solver (three accurate Poisson solves are required in-
stead of just one), there remain difficulties in handling solid bound-
aries and free surfaces (for liquids), and users may find it less intu-
itive working with vorticity rather than velocity in crafting controls
for art direction. However, researchers have observed that vortex
methods can better capture important visual details when running
with the same time step and advection scheme [Yaeger et al. 1986].

In this paper, we combine our observation from vortex methods
with Eulerian grid-based velocity-pressure solvers to arrive at a
novel vorticity error compensation scheme. Our contributions in-
clude:

• A new scheme we dub IVOCK (Integrated Vorticity of Con-
vective Kinematics), that tracks and approximately restores
the dissipated vorticity during advection, independent of the
advection method or other fluid dynamics in play (boundary
conditions, forcing terms) being used.

• A set of novel techniques to store and advance vortex dy-
namics on a fixed spatial grid, maximizing the accuracy while
minimizing the computational effort of IVOCK.

Figure 3: Vorticity confinement (VC) vs. IVOCK. Top row: frame
54 of a rising smoke scenario. From left to right, VC parameter
ε1 = 0.125, ε2 = 0.25, ε3 = 0.5, and SL3-IVOCK. Bottom row:
frame 162. Vorticity confinement tends to create high-frequency
noise everywhere, while IVOCK produces a natural transition from
laminar to turbulent flow with realistic vortex structures along the
way.

• Upgraded classic fluid solvers with IVOCK scheme, docu-
menting the combination of IVOCK with different advection
methods and different types of fluids.

• A new vortex stretching model in a non-divergence-free envi-
ronment for compressible vortex flows occuring in volumetric
combustion.

2 Related work

Stam’s seminal Stable Fluids method [1999] introduced a backward
velocity tracing scheme to solve advection equation, making phys-
ically based fluid animation highly practical for computer graph-
ics. With its unconditional stability, trading accuracy for larger
time step, it provided a basis for most subsequent grid-based fluid
solvers in graphics, for fluid phenomena such as smoke [Fedkiw
et al. 2001], water [Foster and Fedkiw 2001], thin flames [Nguyen
et al. 2002], and volumetric combustion [Feldman et al. 2003].

However, the first order accuracy in both time and space of Stable
Fluids manifests in strong numerical diffusion/dissipation. Many
researchers have taken it as a basic routine to build higher-order ad-
vection schemes. Kim et al. [2005] proposed the BFECC scheme
to achieve higher-order approximation by advecting the field back
and forth, measuring and correcting errors. Selle et al. [2008] elim-
inated the last advection step of BFECC to arrive at a cheaper
MacCormack-type method, and also introduced extrema clamping
in BFECC and MacCormack to attain unconditional stability, at the
cost of discontinuities in velocity which can sometimes cause visual
artifacts. In this paper, we use these advection schemes as exam-
ples to which we apply IVOCK, and show improvements with the
IVOCK scheme for smoke and volumetric combustion simulations.

Hybrid particle-grid methods have been introduced to further re-
duce numerical diffusion in adection, notably Zhu and Bridson’s
adaptation of FLIP to incompressible flow [Zhu and Bridson 2005].
Although FLIP is almost non-diffusive for advection, the velocity-
pressure solver nevertheless may dissipate rotational motion as
shown in figure 2, regardless of the accuracy of advection. FLIP
cannot address this issue; in this paper we show our FLIP-IVOCK
scheme outperforms FLIP in enhancing rotational motions for
smoke.



Resolution plays an important role in fluid animations. McAdams
et al. [2010] proposed multigrid methods to efficiently solve the
Poisson equation at a uniform high resolution. Losasso et al. [2004]
introduced a fluid solver running on an octree data structure to adap-
tively increase resolution where desired, while Setaluri et al. [2014]
adopted a sparse data approach. In our work, multigrid is employed
for the vorticity-stream function solver while an octree code is used
to impose domain-boundary values using Barnes-Hut summation.

Vortex dynamics has proved a powerful approach to simulating tur-
bulence. Lagrangian vortex elements such as vortex particles [Park
and Kim 2005], vortex filaments [Weißmann and Pinkall 2010], or
vortex sheets ([Brochu et al. 2012], [Pfaff et al. 2012]) have been
used to effectively model the underlying vorticity field. Recently,
Zhang and Bridson [2014] proposed a fast summation method to re-
duce the computational burden for Biot-Savart summation, in an at-
tempt to make these methods more practical for production. Unfor-
tunately, these methods are less intuitive for artists (velocity can’t
be modified directly), tend to be more expensive (finding velocity
from vorticity requires the equivalent of three Poisson solves), and
continue to pose problems in formulating good boundary condi-
tions. We were nevertheless inspired by the mechanism to induce
velocity from vorticity, and constructed our IVOCK scheme as a
way to bring some of the advantages of vortex methods to more
practical velocity-pressure solvers.

To balance the trade-off between pure grid-based methods and
pure Lagrangian vortex methods, researchers have incorporated
vorticity-derived forces in Eulerian simulations. Foremost among
these is the vorticity confinement approach [Steinhoff and Under-
hill 1994], where a force field is derived from the current vorticity
field to boost it. Selle at al. [2005] refined this by tracing “vor-
tex particles”, source terms for vorticity confinement tracked with
the flow which provides better artistic control over the added turbu-
lence. Unfortunately, vorticity confinement relies on a non-physical
parameter which must be tuned by the artist. As we can clearly see
in figure 3, too small a parameter doesn’t produce interesting mo-
tion for the early frames of a smoke animation, while still turning
the smoke into incoherent noise in later frames. IVOCK on the
other hand is built in a more principled way upon vortex dynamics,
partially correcting the truncation error in velocity-pressure time-
splitting, and produces natural swirling motions without any param-
eters to tune. In addition, it is orthogonal to vorticity confinement
(viewed as an art direction tool) and can hence be used together
(figure 12).

Turbulence can also be added to the flow as a post-simulation pro-
cess, such as with wavelet turbulence [Kim et al. 2008]. In par-
ticular, the wavelet up-sampling scheme relies on a good original
velocity field to produce visually pleasing animations; IVOCK is
again orthogonal to this and could be adopted to enhance the basic
simulation.

3 The IVOCK scheme

When solving Navier-Stokes, the fluid velocity is usually advanced
to an intermediate state ignoring the incompressibility constraint:

ũ = Advect (un) , (3)
˜̃u = ũ + ∆tf , (4)

where un is the divergence-free velocity field from the previous
time-step and f is a given force field which may include buoyancy,
diffusion, vorticity confinement, and artistically controlled wind or
motion objects.

From this intermediate velocity field ˜̃u one can construct the final
divergence-free velocity un+1 with pressure projection, which is

usually the place where boundary conditions are also handled:

un+1 = Proj
(
˜̃u
)
. (5)

We observe that in vortex dynamics, the intermediate velocity field
ũ of equation 3 is analogously solved using the velocity-vorticity
(u− ω) formula:

1. given ωn, solve
Dω

Dt
= ω · ∇u (6)

to get ω̃;

2. deduce the intermediate velocity field ũ from ω̃.

Equation 6 is the advection-stretching equation for vorticity in 3D,
and step 2 of this (u − ω) formula is usually solved using a Biot-
Savart summation, or equivalently by finding a streamfunction Ψ
(vector-valued in 3D), which satisfies ∇2Ψ = −ω, and readily
obtaining the velocity ũ from ũ = ∇×Ψ .

Equation 6 suggests the post-advection vorticity field ω∗ = ∇× ũ
should ideally equal the stretched and advected vorticity field ω̃,
but due to the simple nature of self-advection of velocity ignoring
pressure, there will be an error related to the time step size.

We therefore define a vorticity correction δω = ω̃ − ω∗, from
which we deduce the IVOCK velocity correction δu and add this
amount to the intermediate velocity ũ. Algorithm 1 provides an
outline of the IVOCK computation before we discuss the details.

Algorithm 1 IVOCKAdvection(∆t,un, ũ)
1: ωn←∇× un

2: ω̃ ← stretch(ωn)
3: ω̃ ← advect(∆t, ω̃)
4: ũ ← advect(∆t, un)
5: ω∗←∇× ũ
6: δω ← ω̃ − ω∗

7: δu← VelocityFromVorticity(δω)
8: ũ ← ũ + δu

In essence, IVOCK upgrades the self-advection of velocity to match
self-advection of vorticity, yet retains most of the efficiency and
all of the flexibility of a velocity-pressure simulator. In particu-
lar, IVOCK doesn’t change the pressure computation (as the di-
vergence of the curl of the correcting streamfunction is identically
zero, hence the right-hand-side of the pressure projection is un-
changed by IVOCK), but simply improves the resolution of rota-
tional motion for large time steps, which we earlier saw was hurt
by velocity self-advection.

3.1 Vortex dynamics on grids

3.1.1 Data storage

Extending the classic MAC grid [Harlow and Welch 1965] widely
adopted by computer graphics researchers for fluid simulation, we
store vorticity and streamfunction components on cell edges in a
staggered fashion, so that the curl operator can be implemented
more naturally, as illustrated in figure 4. For example, if the grid
cell size is h, the z-component of vorticity on the z-aligned edge
centred at (ih, jh, (k + 1

2
)h) is approximated as

ωz(i, j, k +
1

2
) =

1

h

[(
v (i+ 0.5, j, k)− v (i− 0.5, j, k)

)
−
(
u (i, j + 0.5, k)− u (i, j − 0.5, k)

)]
. (7)



Figure 4: Vorticity and streamfunction components are stored in
a staggered fashion on cell edges in 3D (red line), while velocity
components are stored on face centers. This permits a natural curl
finite difference stencil, as indicated by the orange arrows.

3.1.2 Vortex stretching and advection on grid

In 3D flow, when a vortex element is advected by the velocity field,
it is also stretched, changing the vorticity field.

We solve equation 6 on an Eulerian grid using splitting; we solve

∂ω

∂t
= ω · ∇u, (8)

to arrive at an intermediate vorticity field ωn+
1
2 , which is then ad-

vected by the velocity field as

Dω

Dt
= 0. (9)

When discretizing equation 8 on an Eulerian grid, a geometrically-
based choice would be to compute the update with the Jacobian
matrix of u:

ωn+
1
2 = ωn + ∆tJ (u)ωn. (10)

Constructing the Jacobian matrix and computing the matrix vec-
tor multiplication involves a lot of arithmetic, so we simplified this
computation by using

ω · ∇u =
∂u

∂ω
= lim

ε→0

u (x+ 0.5εω)− u (x− 0.5εω)

ε
. (11)

In our computation, with h the grid cell width, we choose ε =
h
‖ω‖2

, which can be seen as sampling the velocity at the two ends
of a grid-cell-sized vortex segment and evaluating how this segment
is stretched by the velocity field.

Once the vorticity field is stretched, it is advected by any chosen
scheme introduced in §2 to get ω̃.

3.1.3 Obtaining δu from δω

To deduce the velocity correction from the vorticity difference, we
solve the Poisson equation for the stream function:

∇2Ψ = −δω (12)

We solve each component of the vector stream function separately:
Let subscript x indicate the x-component of the vector function, we
have

∇2Ψx = −δωx, (13)

The equations for y and z components can be obtained in a similar
fashion.

In vortex dynamics, it is important for this Poisson equation to be
solved in open space to get natural motion, without artifacts from

Figure 5: Barnes-Hut summation [Barnes and Hut 1986] for the
boundary values demonstrated in 2D: we construct the monopoles
of tree nodes from bottom-up (left), and then for an evaluation voxel
(black) in the ghost boundary region (grey), we travel down the tree,
accumulating the far-field influence by the monopoles (blue nodes),
and do direct summation only with close enough red cells (right).

the edges of the finite grid. The open space solution of Poisson’s
equation can be found by a kernel summation with the correspond-
ing fundamental solution. Consider the scalar Poisson problem,

∇2Ψx = −δωx
Ψx(p) = 0, p→∞,

(14)

Its solution, in a discrete sense, is given by the N-body summation

Ψx(pi) ≈
∑

allj,j 6=i

δωxjvj

4πri,j
, (15)

where δωxj , vj are the vortex source strength (component-wise)
and volume of each sample point (voxel), respectively, pi is the
evaluation position, and rij is the distance between the ith and j th

sample positions. With M evaluation points (on the six faces of
the domain boundary) and N source points (the number of voxels),
the direct N-body summation has anO(MN) cost. However, once
an evaluation position pi is far from a cloud of s sources, the sum-
mation of the influence of each individual source can be accurately
approximated by the influence of the monopole of those sources:

s∑
j=1

δωxjvj

4π‖pi − pj‖
≈ 1

4π‖pi − pc‖

s∑
j=1

δωxjvj , (16)

where pc is the center of mass of the cloud, and
∑s
j=1 δωxjvj is

the so-called monopole. Defining an octree on the voxels, akin to
multigrid, we construct from bottom-up the monopoles of clusters
of voxels, and then for each evaluation position, we traverse the tree
top-down as far as needed to accurately and efficiently approximate
the N-body summation, as illustrated in Fig.5. Similarly to Liu and
Doorly [2000], we apply this summation scheme at the M ∝ N

2
3

boundary cells to approximate the open-space boundary values at
anO(N

2
3 log(N)) cost, which we then use as boundary conditions

on a more conventional Poisson solve.

We discretize the Poisson equation with a standard 7-point finite
difference stencil. Because the vorticity difference is small (one
can view it as a truncation error proportional to the time step), we
can get away with applying a single multigrid V-cycle to solve for
each component of the stream function. Recall this is not the stream
function for the complete velocity field of the flow, just the much
smaller velocity correction to the intermediate self-advected veloc-
ity! One V-cycle provides adequate accuracy and global coupling
across the grid at a computational cost of only about 20 basic red-
black Gauss-Seidel iterations. This is cheaper than the pressure
solve, which requires more than three V-cycles for the required ac-
curacy, and is also substantially cheaper than a vorticity-velocity
solver which requires three accurate Poisson solves.

Once the approximate streamfunction is determined, the velocity
correction is computed as δu = ∇×Ψ.



Figure 6: Two sequences from 3D rising smoke simulations. Top
row: MC-IVOCK with vortex stretching. Bottom row: MC-IVOCK
with vortex stretching switched off. With vortex stretching, vortex
rings change their radius under the influence of other vortex rings,
these process can easily perturb the shape of vortex rings, breaking
them to form new vortex structures, which brings rich turbulence
into the flow field.

Figure 7: Left: 2D buoyancy flow simulated with SF. Right: the
same with SF-IVOCK. The resolution and time step were the same;
the IVOCK scheme produces a more richly detailed result.

3.2 Discussion

3.2.1 Vortex stretching

Before proceeding to the 3D applications of the IVOCK scheme
for smoke §4.1, water §4.2 and combustion §4.3, we present a few
examples illustrating the effect of vortex stretching.

In 2D flows, vortex stretching doesn’t take place, hence one need
only advect the vorticity field. Figure 7 compares SF and SF-
IVOCK in 2D.

In 3D flows, vortex stretching plays an important role. Rising vor-
tex rings leapfrogging each other is a physically unstable structure:
the vortex rings break up under small perturbations and form new
vortex structures. Figure 6 illustrates that IVOCK without vortex
stretching produces, at large time steps, visibly wrong results. In
figure 8, we show that the ability of the IVOCK method to capture
vortex stretching can bring more turbulence to the flow, such as
wrinkles on the smoke front, again with relatively large time steps.

3.2.2 Additional forces

IVOCK is only a correction to the self-advection part of a standard
velocity-pressure solver. As such, we do not need to take into ac-
count how additional force terms such as buoyancy, viscosity, and
artist controls will interact with vorticity. These forces are incorpo-
rated into the velocity directly in a differrent step.

Figure 8: Vortex stretching enhances vortical motion, captured
more accurately with IVOCK. Transparent renderings illustrate the
internal structures. Left and middle-lfet: FLIP. Middle-right and
right most: FLIP-IVOCK.

Figure 9: Rising vortex pair initialized by a heat source. Left col-
umn: SF with ∆t = 0.01. Middle column: SF with ∆t = 0.0025.
Right column: SF-IVOCK with ∆t = 0.01. Notice IVOCK pre-
serves vorticity best and produces the highest final position among
the three.

3.2.3 Boundary conditions

While solving IVOCK dynamics, we don’t take boundaries into ac-
count at all: we pose the vorticity-velocity equation in open space,
and allow the subsequent pressure projection to handle boundaries.
However, in some simulations with a strong shear layer along a vis-
cous boundary, we found IVOCK could cause instability; this was
cured easily by zeroing out δω within a few grid cells of the bound-
ary.

It is worth noting that velocity-pressure solvers in general, and
IVOCK in particular, rely on the numerical diffusion of the ad-
vection to produce vortex shedding along boundaries (which are
otherwise not predicted by the fully inviscid equations). Figure 12
shows an example where rising smoke collides with an obstacle;
the velocity boundary condition is handled by the pressure solver,
and no special treatment is needed for the IVOCK streamfunction
computation.

4 Applications and Results

4.1 Smoke

The clearest application of IVOCK is in enriching smoke simula-
tions, where vortex features are of crucial importance visually.

In 2D, we initialized a raising vortex pair from a heat source. With
SF, this vortex pair all but vanishes after 100 time steps; SF-IVOCK
preserves the vorticity much better, as shown in figure 9. We
recorded the total vortex strength (enstrophy) at each time step,
plotted in figure 10.

In 3D, we applied IVOCK to different advection schemes. Figure
1 illustrates the qualitative improvements to all of them. For large



time steps, IVOCK significantly enhances the rotational motion and
structures before turbulence fully develops.
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Figure 10: Vorticity vs. time curve of the 2D vortex pair simula-
tion. While IVOCK does not conserve vorticity exactly due to ap-
proximations in advection and the streamfunction computation, it
still preserves significantly more.

Computationally speaking, the overhead for IVOCK includes the
stretching computation, vorticity evaluation, vorticity advection,
and three V-cycles to approximate the vorticity streamfunction.
These operations add about 10% to 25% extra runtime to the orig-
inal method as a whole: see table 2 for sample performance num-
bers. Alternatively put, the runtime overhead of IVOCK could be
equivalent to improving the original method with about 0.94×∆x
in spatial resolution, or taking about 0.83× smaller time steps. Fig-
ure 11 illustrates that running IVOCK produces better results than
even a simulation with half the time step size, despite running much
faster.

Table 2: Performance comparison of IVOCK augmenting different
schemes, for a smoke simulation at 128x256x128 grid resolution,
running on an Intel(R) Core(TM) i7-3630QM 2.40GHz CPU.

Method sec /time step % overhead
SF 26.6
SF-IVOCK 30.5 14%
SL3 27.7
SL3-IVOCK 32.6 17%
BFECC 31.8
BFECC-IVOCK 39.9 28%
MC 27.9
MC-IVOCK 35.4 26%
FLIP 45.5
FLIP-IVOCK 51.4 12%

Figure 11: IVOCK can be cheaper and higher quality then taking
small time steps. Left and mid-left: BFECC. Mid-right and right:
BFECC-IVOCK with twice as large a time step, computed in much
less time.

Figure 13: IVOCK applied to liquids. Top row: dam break simu-
lations obtained with FLIP (left) and FLIP-IVOCK (right). Bottom
row: moving paddle in a water tank, simulated with FLIP (left) and
FLIP-IVOCK (right). In these and several other cases we tested,
FLIP-IVOCK is not a significant improvement, presumably because
interior vorticity is either not present (irrotional flow) or not visu-
ally important.

4.2 Liquids

We also implemented IVOCK for liquids solved as free surface flow
(see figure 13), with a solver based on Batty et al.’s [2007]. In this
case we only compute the vorticity correction δω inside the liquid,
sufficiently below the free surface so that extrapolated velocities are
not involved in the vorticity stencil, as otherwise we found stability
issues. We solve for the velocity correction with a global solve as
before, disregarding boundaries.

Interestingly, we found IVOCK made little difference to the com-
mon water scenarios we tested, even ones where we made sure to
generate visible vortex structures (e.g. trailing from a paddle push-
ing through water). We note first that typically the only visible part
of a liquid simulation is the free surface itself, unlike smoke and
fire, so interesting vortex motions under the surface are relatively
unimportant. We also hypothesize that most visually interesting liq-
uid phenomena has to do with largely ballistic motion (splashes) or
irrotional motion (as in ocean waves), chiefly determined by grav-
ity, so internal vorticity is of lesser importance. While potential
flow can be modeled with a vortex sheet along the free surface, we
leave capturing this stably in IVOCK to future work.

4.3 Fire

For combustion, the velocity field is not always divergence-free due
to expansions from chemical reactions and intense heating. We sub-
sequently modify the vortex stretching term, noting that ω/ρ is the
appropriate quantity to track [Tabak 2002]:

d

dt

(
ω

ρ

)
=

(
ω

ρ

)
· ∇u. (17)

We discretize equation 17 with Forward Euler,

1

∆t

(
ωn+1

ρn+1
− ωn

ρn

)
=

(
ωn

ρn

)
· ∇un (18)

which implies that

ωn+1 =

(
ρn+1

ρn

)
(ωn + ∆tωn · ∇un) . (19)

Therefore the new strength of a vortex element, after being
stretched and advected, shall be scaled by ρn+1

ρn
.



Figure 12: Rising smoke hitting a spherical obstacle: the velocity boundary condition is handled entirely by the pressure solve, and doesn’t
enter into the IVOCK scheme at all. This example includes a small additional amount of vorticity confinement to illustrate how the methods
can be trivially combined.

In compressible flow, mass conservation can be written as

∂ρ

∂t
+∇ · (ρu) =

Dρ

Dt
+ ρ∇ · u = 0. (20)

Rewriting equation 20 gives

1

ρ

Dρ

Dt
=

D ln ρ

Dt
= −∇ · u, (21)

and by using Forward Euler again we get

ρn+1

ρn
= exp (−∆t∇ · u) . (22)

Plugging equation 22 into equation 17, we observe that in com-
pressible flow, the vorticity field after being stretched and advected,
should be scaled by a factor of exp (−∆t∇ · u). This scaling is
the only change we make to IVOCK for compressible flow. We
combined the modified IVOCK scheme with traditional volumetric
combustion models described by Feldman et al. [2003]; figure 14
shows example frames from such an animation.

5 Conclusion

We argue IVOCK is an interesting stand-alone method to cheaply
enrich the highly flexible grid-based velocity-pressure framework
with much better resolved vorticity at large time steps, and which
can be applied to a variety of advection schemes and fluid phe-
nomena. We believe it brings many of the advantages of vortex
solvers to velocity-pressure schemes, but with only 10 ∼ 25% ex-
tra computation and without the complexity of handling boundary
conditions etc. in a vorticity formulation. However, there are some
limitations and areas for future work we would highlight.

Currently IVOCK is limited to fluid simulations on uniform grids.
A version for adaptive grid or tetrahedral mesh solvers doesn’t ap-
pear intrinsically difficult, as it could reuse the solver’s Poisson in-
frastructure. Fully Lagrangian velocity-pressure particle methods,
especially those that already require some form of vorticity confine-
ment to combat intrinsic numerical smoothing, such as position-
based fluids [Macklin and Müller 2013], may also benefit from the
IVOCK idea.

The presented IVOCK scheme doesn’t exactly recover total circula-
tion (or energy) as Mullen et al.’s symplectic integrator does [2009],
nor does it reproduce turbulent flow quite as well as Lagrangian
vortex methods. We also have at present little more than numer-
ical evidence to argue for its stability, and we haven’t thoroughly
investigated the trade-offs of using just an approximate multigrid
solution for the vorticity-velocity step. It could be worthwhile to
enhance the stability by exploring Elcott et al.’s circulation preserv-
ing method [2007].

The IVOCK scheme alone doesn’t provide any insight into bound-
ary layer models or unresolved subgrid details, hence one possible
future project could be to combine it with subgrid turbulence mod-
els, for post-processing [Kim et al. 2008] or on-the-fly synthesis
[Pfaff et al. 2009]. However, we did observe stability problems with
IVOCK compensation active in strongly shearing boundary layers;
until a better understanding of boundary layers is reached, we rec-
ommend only including the vorticity difference driving IVOCK at
some distance away from boundary layers.
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